
Investigation of various biological dynamic phenomena based on 

the development of single-molecule level analytical methods. 

――――――――――――――――――――――――――――――――――――――― 

 

We are interested in biological phenomena taking place in a relatively short time range (microsecond 

to second (10-6 - 100 sec.)). To access such phenomena, conventional approaches such as transient 

absorption measurements or NMR usually require substantial amount of sample (> 1 nmol). In order to 

achieve ultralow detection limit, one strategy would be to focus on a detection method that relies on 

the properties of molecules that become highlighted when we look at molecules at the single-molecule 

level. Among such phenomena, we have focused on the fluctuating emissions between bright “on” and 

dark “off” states of fluorescent molecules, so-called “blinking”. During the repetitive cycles of excitation 

and emission, fluorescent molecules may occasionally enter non-fluorescent off states, such as a triplet 

state, a radical ion state, and an isomerized state. Reversible formation of such off states causes a 

blinking of the fluorescence. By measuring the duration of the on time (τON) and off time (τOFF) of the 

blinking, we can investigate various biological phenomena with sub-microsecond time resolution at the 

single-molecule level. The changes in the surrounding local microenvironment that modulate blinking 

would also be approaced at the single-molecule level by Kinetic Analysis based on the Control of the 

fluorescence Blinking (KACB method). 

Review: Chem. Eur. J., 26, 7740-7746 (2020). 

       Accounts Chem. Res., 54, 1001-1010 (2021). 

・Fluorescent blinking triggered by trans-cis isomerizaition of a fluorophore Cy3 

Cyanine dyes such as Cy3 are widely used as a fluorescent probe to investigate various biological 

phenomena. It is known to undergo trans-cis photo-isomerization and successive cis-trans back 

thermal-isomerization by rotation around the C–C bonds of the poly-methine chain. This cis-trans 

isomerization causes the blinking of the fluorescence. We focus on the fact that the size of the Cy3 is 

just about the same as the width of the triple helix. Since the cis-trans isomerization efficiency is 
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considered to be strongly dependent on the steric effects that impact the rotation of the molecule, 

we hypothesized that Cy3 may exhibit a triple helix-specific blinking. We incorporated Cy3 into DNA 

double helix, or triple helix conformation and investigated the differences in blinking behavior by 

Fluorescence Correlation Spectroscopy (FCS). The duration of the on time (τON) and off time (τOFF) of 

the blinking, which reflect the inverse of the trans-cis photo-isomerization rate and the cis-trans back 

isomerization rate, respectively, were highest in the triple helix conformation. These results suggest 

that Cy3 can be used to track the presence of the triple helix conformation at the single molecule 

level. 

Chem. Commun. 51, 4861-4864 (2015). 

・Fluorescent blinking triggered by formation of the triplet excited state of a fluorophore 

R6G 

Bimolecular reaction can be slowed down by shielding a fluorophore from the solvent, i.e., 

decreasing the solvent accessibility of the fluorophore. We attempted to monitor the changes in the 

microenvironment that perturbed the extent of the solvent exposure of the fluorophore. The 

bimolecular reaction rate between O2 and the fluorophore R6G in the excited triplet state (3R6G*) was 

tracked by monitoring the triplet blinking. The τOFF value corresponds to the lifetime of 3R6G*. 3R6G* 

quenching reaction with O2 proceeded more slowly when it was buried in a DNA duplex than at the 

hairpin region exposed to the solvent. This enabled the analysis of the molecular-beacon type probe, 

allowing the detection of the target DNA strand at the sub-nanomolar level. 

Chem. Commun 50, 10478-10481 (2014). 

・Fluorescent blinking triggered by the redox reaction of a fluorophore R6G (rKACB) 

Despite the large microenvironment changes in the hairpin-duplex conformational transition, the 

observed difference in the τOFF value in the triplet blinking was smaller than 2-fold. We came to the 

conclusion that the small size of the O2 would be a major obstacle to the sensitive observation of the 

changes in the extent of the solvent exposure of a fluorophore. We focused on the control of redox 

blinking to monitor the microenvironment of the fluorescent probe R6G. By adding ascorbic acid 2-

phosphate (VcP) as a reductant, the triplet state was converted to the radical anion off-state (R6G•−). 

The τOFF value corresponds to the lifetime of R6G•−. Here, under an oxygen scavenging condition, a 

bulky oxidant, diethylenetriaminepentaacetic acid iron(III) (FeDTPA), was utilized to regenerate the 

intact R6G at the ground state. Owing to the much larger size of FeDTPA compared to O2, the 

bimolecular reaction rate between the R6G radical anion (R6G•−) and FeDTPA changed dramatically 

along with the changes in microenvironment of R6G. Observation of the redox blinking enabled 

sensitive detection of subtle conformational changes around the R6G caused by single nucleotide 

alternations in the DNA sequence. 

ChemPhysChem 16, 3590-3594 (2015). 

 

By using rKACB, the structural switching dynamics of RNA between hairpin loop and stem structures 

were studied. 

Angew. Chem. Int. Ed., 56, 15329-15333 (2017). 
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We tested various fluorescent molecules for rKACB, and rKACB was adapted to the discrimination 

between B-form and A-form helixes, and investigation of antigen-antibody interactions at the single 

molecule level. 

Chem. Eur. J., 24, 6755-6761 (2018). 

 

・Triplet-Triplet energy transfer (TTET) to investigate the dynamics of biomolecules 

Cyclooctatetraene (COT) was used as both a triplet acceptor and a photo-stabilizing agent to control 

and observe the blinking at the single-molecule level. By using DNA as a platform, we demonstrated 

that triplet blinking of the fluorescent molecule ATTO 647N can be controlled by the collision reaction 

between COT. Dynamics of biomolecules can be investigated by measuring the blinking. COT and 

ATTO 647N were attached to the molecular beacon type probe which allowed us the detection of 

model biomarker miR-155 at the single-molecule level. 

Angew. Chem. Int. Ed., 60, 12941-12948 (2021). 

https://resou.osaka-u.ac.jp/en/research/20210414_1 

・Fluorescent blinking triggered by the charge separated state in DNA using a 

fluorophore ATTO 655 

By utilizing the transient absorption measurements, we previously showed that charge transfer 

dynamics in DNA is strongly affected by the DNA sequence. We showed that DNA sequence 

information including the data on single nucleotide polymorphisms (SNPs) can be read-out by 

measuring the charge transfer kinetics. However, the measurement requires a significant amount of 

sample (>1 nmol) and thus cannot be used for diagnosis. We focus on that, by using a fluorophore as 

a photosensitizer to generate charges on DNA, the charge-separation, charge-transfer, and charge-

recombination dynamics in DNA can be monitored as the fluorescence blinking. In this case, the 

blinking was caused by the successive reduction and re-oxidation cycles of the fluorescent molecule 

ATTO 655. The τOFF value corresponds to the lifetime of the charge-separated state. Based on the fact 

that the charge-transfer dynamics in DNA is strongly affected by the DNA sequence, we 

demonstrated that single-nucleotide differences in DNA that modulate the charge-recombination 

kinetics can be detected by monitoring the blinking of the fluorescence. 

J. Am. Chem. Soc., 133(39), 15568–15577 (2011). 

ChemBioChem, 14(12), 1430-1433 (2013). 
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